Simulating time-to-event data from parametric distributions, custom distributions, competing risk models and general multi-state models

Michael J. Crowther1,2

1Biostatistics Research Group, Department of Health Sciences, University of Leicester, UK
2Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

17th September 2020

mjcrowther.co.uk michael.crowther@le.ac.uk @Crowther_MJ
Plan

- A brief overview of how to simulate a range of simple and complex time-to-event data
- A new, general framework for simulating from arbitrary multi-state models
- Lots of examples, illustrated with the `survsim` Stata package
Simulating data from a defined distribution can be simple, or can be extremely complex.
Simulating data from a defined distribution can be simple, or can be extremely complex

Assume we have a random variable T, with associated cumulative distribution function, $F(T)$
Simulating data from a defined distribution can be simple, or can be extremely complex

Assume we have a random variable T, with associated cumulative distribution function, $F(T)$

To simulate survival times from such a distribution, we let

$$F \sim U(0, 1)$$
Simulating data from a defined distribution can be simple, or can be extremely complex.

Assume we have a random variable T, with associated cumulative distribution function, $F(T)$.

To simulate survival times from such a distribution, we let

$$F \sim U(0, 1)$$

To simulate an observation, we draw from the uniform distribution, say $u \sim U(0, 1)$, and substitute,

$$F(t) = u$$

and solve for t

$$t = F^{-1}(u)$$
Background

\[t = F^{-1}(u) \]

- Now solving for \(t \) relies on being able to invert the cumulative distribution function, and since it is a function of the cumulative hazard function, we must also be able to integrate our hazard function

\[F(t) = 1 - \exp[-H(t)] \]

\[u = 1 - \exp \left(- \int_{0}^{t} h(s) \, ds \right) \]
Now solving for t relies on being able to invert the cumulative distribution function, and since it is a function of the cumulative hazard function, we must also be able to integrate our hazard function

$$F(t) = 1 - \exp[-H(t)]$$

$$u = 1 - \exp \left(- \int_0^t h(s) \, ds \right)$$

To accommodate these challenges, we developed a combined root-finding and numerical integration algorithm to provide an efficient method of generating event times from arbitrary distribution functions [1]
To be even more general, with this approach we can simulate from any hazard/cumulative hazard function

$$F(t|t_0) = 1 - \exp \left(- \int_{t_0}^{t} h(s|t_0) \, ds \right)$$
To be even more general, with this approach we can simulate from any hazard/cumulative hazard function

\[F(t|t_0) = 1 - \exp \left(- \int_{t_0}^{t} h(s|t_0) \, ds \right) \]

For the competing risks and more general multi-state setting, this is used to simulate from the total hazard function (made up of the sum of cause/transition-specific hazard functions leaving a particular state) [2]
I will go through at least one example of how to use `survsim` to simulate survival data from each of the four main settings:

1. Simulating from standard parametric distributions
2. Simulating from a custom/user-defined hazard function
3. Simulating competing risks data
4. Simulating multi-state data
Description

survsim simulates survival data from:

- **help survsim parametric** - a parametric distribution including the exponential, Gompertz and Weibull, and 2-component mixtures of them. Baseline covariates can be included, with specified associated log hazard ratios. Non-proportional hazards can also be included with all models; under an exponential or Weibull model covariates are interacted with log time, under a Gompertz model covariates are interacted with time. See *Crowther and Lambert (2012)* for more details.

- **help survsim user** - a user-defined distribution. Survival times can be simulated from bespoke, user-defined [log] [cumulative] hazard functions. The function must be specified in Mata code (using colon operators), with survival times generated using a combination of numerical integration and root finding techniques. Time-dependent effects can also be specified with a user-defined function of time. See *Crowther and Lambert (2013)* for more details.

- **help survsim model** - a fitted *merlin* model. *merlin* fits a broad class of survival models, including standard parametric models, spline-based survival models, and user-defined survival models.

- **help survsim msm** - a competing risks or general multi-state model. Event times can be simulated from transition-specific hazards, where each transition hazard function can be a standard parametric distribution, or a user-defined complex hazard function. Covariates and time-dependent effects can be specified for each transition-specific hazard independently.
Let’s simulate survival times from a Weibull distribution, with a binary treatment group, \(\text{trt} \), and a continuous covariate, \(\text{age} \), under proportional hazards:

\[
h(t) = \lambda \gamma t^{\gamma-1} \exp(\text{trt} \beta_1 + \text{age} \beta_2)
\]
I’ll simulate 300 observations, and pick some distributions for the covariates, which should be self-explanatory,

```
. clear
. set obs 300
. set seed 134987
. gen trt = runiform()>0.5
. gen age = rnormal(50,3)
```

We then call `survsim`, setting $\lambda = 0.1$, $\gamma = 1.2$, $\beta_1 = -0.5$ and $\beta_2 = 0.01$.

```
. survsim stime, distribution(weibull) lambda(0.1) gamma(1.2)
> covariates(trt -0.5 age 0.01)
```

which stores our simulated survival times in the new variable `stime`.
I’ll simulate 300 observations, and pick some distributions for the covariates, which should be self-explanatory,

```
clear
set obs 300
set seed 134987
gen trt = runiform() > 0.5
gen age = rnormal(50,3)
```

We then call `survsim`, setting $\lambda = 0.1$, $\gamma = 1.2$, $\beta_1 = -0.5$ and $\beta_2 = 0.01$,

```
survsim stime, distribution(weibull) lambda(0.1) gamma(1.2)>
covariates(trt -0.5 age 0.01)
```

which stores our simulated survival times in the new variable `stime`.
If we wanted to apply right-censoring, we could apply a common censoring time using for example `maxtime(5)`, which would censor all observations if their simulated event times was greater than 5, or we could generate observation specific potential censoring times, such as

```stata
.gen censtime = runiform() * 5
```

and now add the `maxtime()` option to `survsim`, remembering to also specify a second new variable name for the event indicator,

```stata
.survsim stime2 died2, distribution(weibull) lambda(0.1) gamma(1.2) ///
covariates(trt -0.5 age 0.01) maxtime(censtime)
```
If we wanted to apply right-censoring, we could apply a common censoring time using for example `maxtime(5)`, which would censor all observations if their simulated event times was greater than 5, or we could generate observation specific potential censoring times, such as

```
. gen censtime = runiform() * 5
```

and now add the `maxtime()` option to `survsim`, remembering to also specify a second new variable name for the event indicator,

```
. survsim stime2 died2, distribution(weibull) lambda(0.1) gamma(1.2) ///
   covariates(trt -0.5 age 0.01) maxtime(censtime)
```

We could also:

- add time-dependent effects using the `tde()` option
- add left-truncation/delayed entry using the `ltruncated()` option
Simulating survival times from a user-defined (log) (cumulative) hazard function

. clear
. set obs 500
. set seed 134987
. gen trt = runiform()>0.5

The most flexible form of simulating survival data with survsim is by specifying a custom hazard or cumulative hazard function, such as:

\[h(t) = h_0(t) \exp(trt\beta_1) \]

where

\[h_0(t) = \exp(-1 + 0.02t - 0.03t^2 + 0.005t^3) \]

which can be done, on the \texttt{loghazard()} scale for simplicity, using
The `loghazard()` function is defined using Mata code, with colon operators representing element by element operations.

Time must be referred to using the `{t}` notation.
We could make the treatment effect diminish over log time by incorporating a time-dependent effect, where

\[\beta_1(t) = \log(t) \beta_1 \]

which is defined using the `tdefunction()` and `tde()` options, setting \(\beta_1 = 0.03 \)

```
. survsim stime2 died2, loghazard(-1:+0.02:*{t}:-0.03:*{t}:^2:+0.005:*{t}:^3)
>   covariates(trt -0.5) tde(trt 0.03) tdefunction(log({t}))
>   maxtime(1.5)
```

Warning: 328 survival times were above the upper limit of `maxtime()`

They have been set to `maxtime()`

You can identify them by `_survsim_rc = 3`

- which will form an interaction between `trt`, its coefficient 0.03 and log time
We could make the treatment effect diminish over log time by incorporating a time-dependent effect, where

\[\beta_1(t) = \log(t) \beta_1 \]

which is defined using the `tdefunction()` and `tde()` options, setting \(\beta_1 = 0.03 \)

```
.survsim stime2 died2, loghazard(-1:+0.02:*{t}:-0.03:*{t}:^2:+0.005:*{t}:^3)
> covariates(trt -0.5) tde(trt 0.03) tdefunction(log({t}))
> maxtime(1.5)
Warning: 328 survival times were above the upper limit of maxtime()
They have been set to maxtime()
You can identify them by _survsim_rc = 3
```

- which will form an interaction between `trt`, its coefficient 0.03 and log time
- Alternatively, we could instead simulate from a model on the cumulative hazard scale, using the `logchazard()` option instead.
Simulating survival times from a fitted merlin survival model

Rather than simulating from a particular data-generating model specified essentially by hand, we can directly simulate from a fitted model.

```
. webuse brcancer, clear  
(German breast cancer data)  
. stset rectime, f(censrec=1) scale(365)  
. stmerlin hormon, distribution(weibull)
```

Fitting full model:

```
Survival model Number of obs = 686  
Log likelihood = -868.02684  
------------------------------------------------------------------------------  
| Coef. Std. Err. z P>|z| [95% Conf. Interval]  
-------------+----------------------------------------------------------------  
_t: |  
  hormon | -.3932405   .1248267  -3.15  0.002  -.6378962  -.1485847  
  _cons |  -2.196012   .1094092  -20.07  0.000  -2.41045  -1.981574  
  log(gamma) | .2509974   .0496958   5.05  0.000   .1535953   .3483994  
------------------------------------------------------------------------------
```

Simulating survival data

17th September 2020
We then simply store the model object, calling it whatever we like, such as the imaginative name of m1,

```
. estimates store m1
```

This we then pass to `survsim` to simulate a dataset, of the same size, using our fitted results,

```
. survsim stime5 died5, model(m1) maxtime(7)
```

The option `maxtime()` is required in this case.
We can then fit the same model as before, and of course get slightly different results, because we have sampling variability.

```stata
. stset stime5, failure(died5)
. stmerlin hormon , distribution(weibull)
```

Survival model
Number of obs = 686
Log likelihood = -1298.8059

Coef. Std. Err.	z	P>	z	[95% Conf. Interval]		
_t:						
hormon	-.3533907	.1014646	-3.48	0.000	-.5522576	-.1545238
_cons	-2.349859	.1100583	-21.35	0.000	-2.565569	-2.134148
log(gamma)	.2650626	.0421563	6.29	0.000	.1824377	.3476875

- Easy to manipulate your covariate distributions in your dataset, and then simply recall `survsim`
We can then fit the same model as before, and of course get slightly different results, because we have sampling variability.

```
. stset stime5, failure(died5)
. stmerlin hormon , distribution(weibull)
```

Survival model

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|-----------|-------|------|----------------------|
| _t: | | | | |
| hormon | -0.3533907| 0.1014646 | -3.48 | 0.000 | -0.5522576, -0.1545238 |
| _cons | -2.349859 | 0.1100583 | -21.35 | 0.000 | -2.565569, -2.134148 |
| log(gamma)| 0.2650626 | 0.0421563 | 6.29 | 0.000 | 0.1824377, 0.3476875 |

- Easy to manipulate your covariate distributions in your dataset, and then simply recall `survsim`
- `survsim` can simulate from any of the available survival models in `merlin`, but does not support simulation from multivariate models or a model containing random effects
Simulating competing risks data from specified cause-specific hazard functions

Let’s simulate from a competing risk model with 2 competing events. The first cause-specific hazard has a Weibull distribution, with no covariates. The second cause-specific hazard model has an exponential distribution, with a beneficial treatment effect. Right censoring is applied at 10 years.

```
clear
set seed 398
set obs 1000
gen trt = runiform()>0.5
survsim time state event, hazard1(dist(weibull) lambda(0.1) gamma(0.8)) hazard2(dist(exponential) lambda(0.02) covariates(trt -0.5)) maxtime(10)
```

variables time0 to time1 created
variables state0 to state1 created
variables event1 to event1 created
Each hazard() defines a cause-specific hazard function, with specified distribution() and associated baseline parameters, covariate effects and time-dependent effects.
Each hazard() defines a cause-specific hazard function, with specified distribution() and associated baseline parameters, covariate effects and time-dependent effects.

Each of the hazard() functions can be as similar, or different, as required.
Each hazard() defines a cause-specific hazard function, with specified distribution() and associated baseline parameters, covariate effects and time-dependent effects.

Each of the hazard() functions can be as similar, or different, as required.

survsim creates some new variables, based on the newvarstubs that we specified in the call.

```
. list if _n<=5
+----------------------------------------------------+
| trt  time0  state0  time1  state1  event1        |
+----------------------------------------------------+
1. | 0    0    1    4.5792847  2    1 |
2. | 1    0    1    10    1    1    0 |
3. | 1    0    1    10    1    1    0 |
4. | 1    0    1    2.8415219  3    1 |
5. | 0    0    1    1.576534  2    1 |
+----------------------------------------------------+
```

The starting time can be changed using the ltruncated() option.
From the starting state, observations have two places to go:

- State 1 to State 2, with the transition rate governed by `hazard1()`
- State 1 to State 3, with the transition rate governed by `hazard2()`
From the starting state, observations have two places to go:

- State 1 to State 2, with the transition rate governed by \(\text{hazard1()} \)
- State 1 to State 3, with the transition rate governed by \(\text{hazard2()} \)

We can see which events occurred with

```
. tabulate state1 event1
```

<table>
<thead>
<tr>
<th>state1</th>
<th>event1</th>
<th>1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>484</td>
</tr>
<tr>
<td>1</td>
<td>484</td>
<td>0</td>
<td>484</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>414</td>
<td>414</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>Total</td>
<td>484</td>
<td>516</td>
<td>1,000</td>
</tr>
</tbody>
</table>

which shows that at by ten years, 484 observations were right-censored, 414 are in State 2, and 102 are in State 3.
Now let’s simulate from a competing risk model with 3 competing events...

```
. cap drop time* state* event*
. set seed 32984575
. survsim time state event, ///
    > hazard1(user(exp(-2 :+ 0.2:* log({t}) :+ 0.1:*{t}))) ///
    >    covariates(trt 0.1)) ///
    > hazard2(dist(weibull) lambda(0.01) gamma(1.3) ///
    >   covariates(trt -0.5)) ///
    > hazard3(user(0.1 :* {t} :^ 1.5) covariates(trt -0.5) ///
    >    tde(trt 0.1) tdefunction(log({t}))) ///
    > maxtime(3)
variables time0 to time1 created
variables state0 to state1 created
variables event1 to event1 created
```
Where did they go...

```
.tabulate state1 event1
```

<table>
<thead>
<tr>
<th>state1</th>
<th>event1</th>
<th>0</th>
<th>1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>341</td>
<td>0</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>345</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>284</td>
<td>284</td>
<td></td>
</tr>
</tbody>
</table>

Total | 341 | 659 | 1,000|

I currently let you use up to 50 cause-specific hazards, just in case you’re feeling particularly adventurous.
Simulating from an illness-death model

We first define the transition matrix for an illness-death model. It has three states:

- **State 1** - A ”healthy” state. Observations can move from state 1 to state 2 or 3.
- **State 2** - An intermediate ”illness” state. Observations can come from state 1, and move on to state 3.
- **State 3** - An absorbing ”death” state. Observations can come from state 1 or 2, but not leave.
This gives us three potential transitions between states:

- Transition 1 - State 1 → State 2
- Transition 2 - State 1 → State 3
- Transition 3 - State 2 → State 3

which is defined by the following matrix:

\[
\begin{bmatrix}
\cdot & 1 & 2 \\
\cdot & \cdot & 3 \\
\cdot & \cdot & \cdot
\end{bmatrix}
\]
This gives us three potential transitions between states:

- Transition 1 - State 1 → State 2
- Transition 2 - State 1 → State 3
- Transition 3 - State 2 → State 3

which is defined by the following matrix:

```
. matrix tmat = (.,1,2\.,.,3\.,.,.)
```

Let’s make it more clear

```
. mat colnames tmat = "healthy" "ill" "dead"
. mat rownames tmat = "healthy" "ill" "dead"
. mat list tmat
tmat[3,3]
          healthy    ill    dead
healthy      .    1     2
  ill         .    .     3
 dead        .    .     .
```
Now we’ve defined the transition matrix, we can use `survsim` to simulate some data

```
clear
set obs 1000
number of observations (_N) was 0, now 1,000
set seed 9865
gen trt = runiform()>0.5
```
This time I add the `transmat()` option...

```
. survsim time state event, transmatrix(tmat) ///
> hazard1(user(exp(-2 :: 0.2:* log({t}) :: 0.1::*{t}))) ///
> covariates(trt 0.1)) ///
> hazard2(dist(weibull) lambda(0.01) gamma(1.3)) ///
> covariates(trt -0.5)) ///
> hazard3(user(0.1 :: {t} ^ 1.5) covariates(trt -0.5) ///
> tde(trt 0.1) tdefunction(log({t}))) ///
> maxtime(3)

variables time0 to time2 created
variables state0 to state2 created
variables event1 to event2 created
```
We can see what survsim has created:

```
.list if inlist(_n,1,4,16,112), compress
```

<table>
<thead>
<tr>
<th>trt</th>
<th>time0</th>
<th>sta~0</th>
<th>time1</th>
<th>sta~1</th>
<th>eve~1</th>
<th>time2</th>
<th>sta~2</th>
<th>eve~2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>.95636156</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>16.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.0755764</td>
<td>2</td>
<td>1</td>
<td>2.4401409</td>
<td>3</td>
</tr>
<tr>
<td>112.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2.3290322</td>
<td>3</td>
<td>1</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
All observations start initially in state 1 at time 0, which are stored in state0 and time0, respectively. Then,

- Observation 1 is right-censored at 3 years, remaining in state 1
- Observation 4 moves to state 2 at 0.956 years, and is subsequently right-censored at 3 years, still in state 2
- Observation 16 moves to state 2 at 1.076 years, and then moves to state 3 at 2.440 years. Since state 3 is an absorbing state, there are no further transitions
- Observation 112 moves to state 3 at 2.329 years. Again, since state 3 is absorbing, there are no further transitions
There’s a variety of extensions we could incorporate,

- we could simulate from a semi-Markov model by using the reset option in `hazard3()`, which would reset the clock when State 2 is entered. The simulated event times that `survsim` returns will still be calculated on the main timescale in this case, time since initial `startstate()`

- We could of course have a much more complex multi-state structure, i.e. more states or reversible transitions. Both of these are supported by `survsim`
Simulating biologically plausible time to event data is crucial to understanding, evaluating and developing methods.

\texttt{survsim} can simulate survival data from pretty much anything you can think of...

Paper - https://www.mjcrowther.co.uk/publication/survsim/

Code and examples -
https://www.mjcrowther.co.uk/software/survsim/