Joint longitudinal-survival model with time-dependent effects (non-proportional hazards)

The standard joint model was described and illustrated with merlin here. In this example we consider time-dependent effects in the survival submodel. Once again we have,

$$h(t) = h_{0}(t) \exp(X_{1ij}\mathbf{\beta_{1}} + \alpha m_{i}(t))$$

and

$$y_{}(t) = m_{i}(t) + \epsilon_{ij}$$

where

$$m_{i}(t) = X_{2ij}(t)\mathbf{\beta}_{2} + Z_{ij}(t)b_{i}$$

and

$$b_{i} \sim N(0,\Sigma)$$

Given the survival submodel is a proportional hazards model, we are making the assumption that both our hazard ratios $\exp (\beta_{1})$ for the covariates $X_{1ij}$, and the hazard ratio for the effect of our biomarker, $\exp(\alpha)$, are constant across follow-up time. We can relax these assumptions to allow for non-proportional hazards i.e. by modelling time-dependent effects. First we consider the following model,

$$h(t) = h_{0}(t) \exp(X_{1ij}\beta_{1}(t) + \alpha m_{i}(t))$$

where if we assume $X_{1ij}$ is a binary treatment variable, we can allow its associated hazard ratio $\beta_{1}(t)$ to be time-dependent, by making it a function of $\log (t)$

$$h(t) = h_{0}(t) \exp(X_{1ij} \beta_{1} + X_{1ij} \times \beta_{2} \times \log (t) + \alpha m_{i}(t))$$

We can fit this model with merlin as follows

. use https://www.mjcrowther.co.uk/data/jm_example.dta, clear
(Example dataset for joint modelling, Michael Crowther 2011)

. merlin (stime trt trt#fp(stime,pow(0)) EV[logb],                      ///
>              family(weibull, failure(died)) timevar(stime))           ///
>        (logb fp(time,pow(1)) fp(time,pow(1))#M2[id]@1 M1[id]@1,       ///
>              family(gaussian) timevar(time))                          ///
>        , restartvalues(M2 0.1)
variables created for model 1, component 2: _cmp_1_2_1 to _cmp_1_2_1
variables created for model 2, component 1: _cmp_2_1_1 to _cmp_2_1_1
variables created for model 2, component 2: _cmp_2_2_1 to _cmp_2_2_1

Fitting fixed effects model:

Fitting full model:

Iteration 0:   log likelihood = -3147.3991  
Iteration 1:   log likelihood =  -2305.879  
Iteration 2:   log likelihood = -2288.7621  
Iteration 3:   log likelihood = -1934.0652  
Iteration 4:   log likelihood = -1932.1905  
Iteration 5:   log likelihood = -1932.1887  
Iteration 6:   log likelihood = -1932.1887  

Mixed effects regression model                  Number of obs     =      1,945
Log likelihood = -1932.1887
------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
stime:       |            
         trt |   .1236849   .2526514     0.49   0.624    -.3715027    .6188725
    trt#fp() |  -.0929609    .166218    -0.56   0.576    -.4187422    .2328205
        EV[] |   1.261099   .0955683    13.20   0.000     1.073788    1.448409
       _cons |  -4.508606   .3321891   -13.57   0.000    -5.159685   -3.857527
  log(gamma) |    .063174   .1101584     0.57   0.566    -.1527326    .2790806
-------------+----------------------------------------------------------------
logb:        |            
        fp() |   .1690605    .013109    12.90   0.000     .1433674    .1947537
 fp()#M2[id] |          1          .        .       .            .           .
      M1[id] |          1          .        .       .            .           .
       _cons |   .4993858   .0595809     8.38   0.000     .3826093    .6161622
  sd(resid.) |    .345686    .006619                      .3329534    .3589055
-------------+----------------------------------------------------------------
id:          |            
      sd(M1) |   1.026386   .0433006                      .9449323    1.114861
      sd(M2) |   .1805098   .0123637                      .1578334    .2064441
------------------------------------------------------------------------------

We can also relax the proportional hazards assumption on our association parameter, as follows,

$$h(t) = h_{0}(t) \exp(X_{1ij}\mathbf{\beta_{1}} + \alpha_{1} m_{i}(t) + \alpha_{2} \times \log (t) \times m_{i}(t) )$$

which can be fitted using,

. merlin (stime trt EV[logb] EV[logb]#fp(stime,pow(0))                 ///
>                    , family(weibull, failure(died)) timevar(stime))  ///
>        (logb fp(time,pow(1)) fp(time,pow(1))#M2[id]@1 M1[id]@1       ///
>                    , family(gaussian) timevar(time))
variables created for model 1, component 3: _cmp_1_3_1 to _cmp_1_3_1
variables created for model 2, component 1: _cmp_2_1_1 to _cmp_2_1_1
variables created for model 2, component 2: _cmp_2_2_1 to _cmp_2_2_1

Fitting fixed effects model:

Fitting full model:

Iteration 0:   log likelihood = -3328.8882  (not concave)
Iteration 1:   log likelihood = -2385.0776  
Iteration 2:   log likelihood = -1962.0446  
Iteration 3:   log likelihood = -1933.2694  
Iteration 4:   log likelihood = -1929.9663  
Iteration 5:   log likelihood = -1929.8696  
Iteration 6:   log likelihood = -1929.8674  
Iteration 7:   log likelihood = -1929.8674  

Mixed effects regression model                  Number of obs     =      1,945
Log likelihood = -1929.8674
------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
stime:       |            
         trt |   .0760778   .1805074     0.42   0.673    -.2777102    .4298658
        EV[] |   1.518905   .1637616     9.28   0.000     1.197938    1.839872
   EV[]#fp() |  -.2095983    .097755    -2.14   0.032    -.4011945   -.0180021
       _cons |  -5.362486   .5439833    -9.86   0.000    -6.428673   -4.296298
  log(gamma) |   .3840729   .1604283     2.39   0.017     .0696392    .6985066
-------------+----------------------------------------------------------------
logb:        |            
        fp() |   .1698027   .0132098    12.85   0.000     .1439119    .1956936
 fp()#M2[id] |          1          .        .       .            .           .
      M1[id] |          1          .        .       .            .           .
       _cons |   .5003171   .0595577     8.40   0.000     .3835862    .6170479
  sd(resid.) |   .3454356   .0066109                      .3327185    .3586388
-------------+----------------------------------------------------------------
id:          |            
      sd(M1) |   1.025622   .0432787                      .9442107    1.114053
      sd(M2) |   .1815505   .0124789                      .1586683    .2077327
------------------------------------------------------------------------------

For completeness we can model non-proportional hazards in both our treatment effect and our association parameter as follows,

. merlin (stime trt trt#fp(stime,pow(0)) EV[logb] EV[logb]#fp(stime,pow(0)),  ///
>                             family(weibull, failure(died)) timevar(stime))  ///
>        (logb fp(time,pow(1)) fp(time,pow(1))#M2[id]@1 M1[id]@1,             ///
>                             family(gaussian) timevar(time))                 ///
>        , restartvalues(M2 0.1)
variables created for model 1, component 2: _cmp_1_2_1 to _cmp_1_2_1
variables created for model 1, component 4: _cmp_1_4_1 to _cmp_1_4_1
variables created for model 2, component 1: _cmp_2_1_1 to _cmp_2_1_1
variables created for model 2, component 2: _cmp_2_2_1 to _cmp_2_2_1

Fitting fixed effects model:

Fitting full model:

Iteration 0:   log likelihood = -3147.3991  
Iteration 1:   log likelihood = -2513.1808  (not concave)
Iteration 2:   log likelihood = -2179.3897  (not concave)
Iteration 3:   log likelihood = -1959.3924  (not concave)
Iteration 4:   log likelihood = -1937.9185  
Iteration 5:   log likelihood = -1930.2868  
Iteration 6:   log likelihood = -1929.5508  
Iteration 7:   log likelihood = -1929.5161  
Iteration 8:   log likelihood =  -1929.516  

Mixed effects regression model                  Number of obs     =      1,945
Log likelihood =  -1929.516
------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
stime:       |            
         trt |   .2345127   .2600756     0.90   0.367     -.275226    .7442515
    trt#fp() |  -.1396854   .1661587    -0.84   0.401    -.4653505    .1859798
        EV[] |   1.544048   .1675965     9.21   0.000     1.215564    1.872531
   EV[]#fp() |  -.2205425   .0990941    -2.23   0.026    -.4147635   -.0263216
       _cons |  -5.544985   .5856636    -9.47   0.000    -6.692865   -4.397106
  log(gamma) |   .4437813   .1675397     2.65   0.008     .1154096     .772153
-------------+----------------------------------------------------------------
logb:        |            
        fp() |   .1698975   .0132107    12.86   0.000     .1440049      .19579
 fp()#M2[id] |          1          .        .       .            .           .
      M1[id] |          1          .        .       .            .           .
       _cons |   .5003622   .0595612     8.40   0.000     .3836243    .6171001
  sd(resid.) |   .3454272     .00661                      .3327118    .3586286
-------------+----------------------------------------------------------------
id:          |            
      sd(M1) |   1.025705   .0432803                      .9442896    1.114139
      sd(M2) |   .1815854   .0124773                      .1587055    .2077637
------------------------------------------------------------------------------

In any of the models above, there is no restriction on what functional form we use to model each of the time-dependent effects. If a more complex form is desired, then we can use the fp() or rcs() syntax to get more flexible time functions. For example using fractional polynomials,

. merlin (stime trt EV[logb] EV[logb]#fp(stime,pow(1 2))           ///
>                 , family(weibull, failure(died)) timevar(stime)) ///
>        (logb fp(time,pow(1)) fp(time,pow(1))#M2[id]@1 M1[id]@1   ///
>                 , family(gaussian) timevar(time))                ///
>        , restartvalues(M2 0.1)
variables created for model 1, component 3: _cmp_1_3_1 to _cmp_1_3_2
variables created for model 2, component 1: _cmp_2_1_1 to _cmp_2_1_1
variables created for model 2, component 2: _cmp_2_2_1 to _cmp_2_2_1

Fitting fixed effects model:

Fitting full model:

Iteration 0:   log likelihood = -3147.7168  
Iteration 1:   log likelihood = -2579.8759  (not concave)
Iteration 2:   log likelihood = -2047.6717  
Iteration 3:   log likelihood = -1969.8766  
Iteration 4:   log likelihood = -1931.0458  
Iteration 5:   log likelihood = -1930.0696  
Iteration 6:   log likelihood =  -1930.066  
Iteration 7:   log likelihood =  -1930.066  

Mixed effects regression model                  Number of obs     =      1,945
Log likelihood =  -1930.066
------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
stime:       |            
         trt |   .0678679   .1803206     0.38   0.707     -.285554    .4212899
        EV[] |   1.489871   .2001501     7.44   0.000     1.097584    1.882158
 EV[]#fp():1 |  -.0563388   .0658018    -0.86   0.392     -.185308    .0726305
 EV[]#fp():2 |   .0012085   .0044445     0.27   0.786    -.0075025    .0099195
       _cons |  -4.948364   .4383433   -11.29   0.000    -5.807501   -4.089227
  log(gamma) |   .2286889   .1430927     1.60   0.110    -.0517676    .5091454
-------------+----------------------------------------------------------------
logb:        |            
        fp() |   .1689365   .0131413    12.86   0.000       .14318     .194693
 fp()#M2[id] |          1          .        .       .            .           .
      M1[id] |          1          .        .       .            .           .
       _cons |   .5000151   .0596196     8.39   0.000     .3831628    .6168673
  sd(resid.) |   .3455656   .0066158                      .3328391    .3587787
-------------+----------------------------------------------------------------
id:          |            
      sd(M1) |   1.026716   .0433295                      .9452087    1.115251
      sd(M2) |   .1805794   .0123842                      .1578673     .206559
------------------------------------------------------------------------------

or restricted cubic splines,

. merlin (stime trt EV[logb] EV[logb]#rcs(stime, df(3) log event)             ///
>                           , family(weibull, failure(died)) timevar(stime))  ///
>        (logb fp(time,pow(1)) fp(time,pow(1))#M2[id]@1 M1[id]@1              ///
>                           , family(gaussian) timevar(time))                 ///
>        , restartvalues(M2 0.1)                          
variables created for model 1, component 3: _cmp_1_3_1 to _cmp_1_3_3
variables created for model 2, component 1: _cmp_2_1_1 to _cmp_2_1_1
variables created for model 2, component 2: _cmp_2_2_1 to _cmp_2_2_1

Fitting fixed effects model:

Fitting full model:

Iteration 0:   log likelihood = -3147.7168  (not concave)
Iteration 1:   log likelihood = -2274.4939  
Iteration 2:   log likelihood = -1957.0237  
Iteration 3:   log likelihood = -1931.4924  
Iteration 4:   log likelihood = -1929.4036  
Iteration 5:   log likelihood = -1929.3162  
Iteration 6:   log likelihood =  -1929.316  

Mixed effects regression model                  Number of obs     =      1,945
Log likelihood =  -1929.316
------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
stime:       |            
         trt |   .0860589   .1812669     0.47   0.635    -.2692177    .4413355
        EV[] |   1.574589   .2154628     7.31   0.000     1.152289    1.996888
EV[]#rcs():1 |    -.15243   .1325297    -1.15   0.250    -.4121834    .1073235
EV[]#rcs():2 |  -.0205161   .1181801    -0.17   0.862    -.2521448    .2111126
EV[]#rcs():3 |   .0474125   .1849339     0.26   0.798    -.3150512    .4098762
       _cons |  -5.395841   .5639922    -9.57   0.000    -6.501246   -4.290437
  log(gamma) |   .3872657   .1669159     2.32   0.020     .0601165     .714415
-------------+----------------------------------------------------------------
logb:        |            
        fp() |   .1695191   .0132021    12.84   0.000     .1436436    .1953947
 fp()#M2[id] |          1          .        .       .            .           .
      M1[id] |          1          .        .       .            .           .
       _cons |   .5005547   .0596044     8.40   0.000     .3837323    .6173772
  sd(resid.) |   .3454686   .0066128                      .3327479    .3586755
-------------+----------------------------------------------------------------
id:          |            
      sd(M1) |   1.026383   .0433163                      .9449014    1.114892
      sd(M2) |   .1812488   .0124586                      .1584038    .2073885
------------------------------------------------------------------------------

I’ve also only shown a time-dependent effect under the current value parameterisation. Any of the other structures shown here can also be made time-dependent in a similar way.

This example used merlin version 2.0.2.

Related

comments powered by Disqus